Ruthenium(II) Complexes with New Tridentate Ligands containing P, N, O Donor Atoms: Highly Efficient Catalysts for Transfer Hydrogenation of Ketones by Propan-2-ol

Hong Yang, Marie Alvarez, Noël Lugan and René Mathieu*

Laboratoire de Chimie de Coordination du CNRS, UPR 8241, lié par conventions à l'Université Paul Sabatier et à l'Institut National Polytechnique, 205 route de Narbonne, 31077 Toulouse Cedex, France

The complexes [RuCl₂(PPh₃)(L)] in which L is a tridentate ligand with P, N and O donor atoms are very efficient catalysts for the transfer hydrogenation of cyclic ketones and acetophenone (turnover \leq 118 800 h⁻¹) in basic media; when L is optically active, no significant e.e. is observed.

We have recently described the new ligand 1-(diphenylphosphino)-2-ethoxy-1-(2-pyridyl)ethane 1 and shown that it can be either bidentate (P, N) or tridentate (P, N, O) towards various metals.¹ For instance, the reaction of 2 equiv. of 1 with $[RuCl_2(PPh_3)_3]$ leads to the formation of $[RuCl_2(1)_2]$ in which 1 is (P, N) bound¹ but, more recently² we have observed that, when the reaction is conducted with only 1 equiv. of 1, the complex 2 [RuCl₂(PPh₃)(1)] is obtained in good yield. In this compound the ligand 1 is (P, O, N) bound and the ether arm has hemilabile character.³ This property should induce catalytic activity in the resulting complexes³ and prompted us to explore the catalytic properties of 2. We report here the remarkable results obtained for the 2-catalysed transfer hydrogenation of ketones by propan-2-ol, and the extension to other complexes $[\operatorname{RuCl}_2(\operatorname{PPh}_3)(L)]$ in which L is optically active and (P, O, N)tridentate.

These experiments were performed under similar reaction conditions to those used by Bäckvall and coworkers with $[RuCl_2(PPh_3)_3]$ as catalyst precursor.^{4†} The hydrogenation of cyclohexanone into cyclohexanol was nearly instantaneous: after 30 s, GC analysis showed 99% conversion. This is a turnover rate of 118 800 h⁻¹, 66 times greater than the initial turnover rate observed by Bäckvall during the first 15 min of the reaction using $[RuCl_2(PPh_3)_3]$ as catalyst (only 89% conversion was observed after 1 h).⁴ This high activity of **2** is also observed for the hydrogenation of cyclopentanone and acetophenone (Table 1). To the best of our knowledge this is the highest activity ever reported for ruthenium-catalysed transfer hydrogenation of ketones by propan-2-ol.⁵ However, as observed for

Table 1 Catalysed transfer-hydrogenation of ketones^a

 $[RuCl_2(PPh_3)_3]$, the activity of **2** for the hydrogenation of propiophenone is low (Table 1).

No activity is observed in the absence of sodium hydroxide and in boiling ethanol the activity is very low (8% conversion after 4 h for the hydrogenation of acetophenone).

It is very likely that the high activity of 2 is related to the presence of the hemilabile ether arm of 1. Indeed, the complex

Catalyst	Substrate	Product	Conversion (%) ^b	Time ^b	Turnover/h ⁻¹
2	o	OH	99 (89)	30 s (1 h)	118 800
2	°	он Он	41 (50) 93	30 s (1 h) 15 min	49 200 3 720
2	Ph Me O	Ph Me OH	50 (48) 88 (75)	30 s (1 h) 15 min (6 h)	90 000 3 520
2	Ph	Ph	12 (18)	1 h (1 h)	120
6a	Ph Me		82	20 min	2 460
6b	Ph Me		85	20 min	2 550
7	Ph	Ph	83	1 min	49 800

^a All the experiments were run on a 10 mmol scale. ^b Values in parentheses refer to results from ref. 4.

 $[RuCl_2(PPh_3)(3)]^2$ [3 = Ph₂PCH(2-pyridyl)₂] in which 3 is (P, N, N) bound, is less active for the transfer hydrogenation of acetophenone (45% conversion after 3 h), and the complex $[RuCl_2(PPh_3)(CO)(1)]$ in which 1 is (P, N) bound effects only a 17% conversion after 1 h.

The high efficiency of 2 for hydrogenation of acetophenone led us to check whether optically active tridentate (P, O, N) ligands similar to 1 can induce asymmetric hydrogen transfer reactions.^{5,6} The two diastereoisomers of 1-(diphenylphosphino)-2-(1*R*, 2*S*, 5*R*)-menthoxy-1-(2-pyridyl) ethane (**4a** and **4b**) and the donor (*S*)[(phenyl)(2-anisyl)phosphino](2-pyridyl) methane **5** (Scheme 1) have been synthesized, and the corresponding complexes [RuCl₂(PPh₃)(L)] prepared (**6a**, L = **4a**; **6b**, L = **4b**; **7**, L = **5**).³ Disappointingly, in no case was a significant e.e. observed, even though the activities of the three catalysts were at least as high as that of **2** (Table 1).

We thank the 'Conseil Régional Midi-Pyrénées' and the CNRS for financial support.

Received, 22nd May 1995; Com. 5/03275J

Footnotes

 \dagger Typical procedure for catalytic reactions. Degassed propan-2-ol (5 ml) was added to catalyst (0.01 mmol) under nitrogen and the mixture heated at reflux (10 min). Ketone (10 mmol) was dissolved in degassed propan-2-ol (3 ml) and was added dropwise to the refluxing mixture and after 10 min a solution of NaOH (9.5 mg, 0.237 mmol) in propan-2-ol (2 ml) was added dropwise. The mixture was kept at 82 °C and the progress of the reaction monitored by GC analysis.

References

- 1 M. Alvarez, N. Lugan and R. Mathieu, J. Chem. Soc., Dalton Trans., 1994, 2755.
- 2 M. Alvarez, H. Yang, N. Lugan and R. Mathieu, paper in preparation.
- 3 A. Bader and E. Lindner, Coord. Chem. Rev., 1991, 108, 27.
- 4 R. L. Chowdhury and J. E. Bäckvall, J. Chem. Soc., Chem. Commun., 1991, 1063.
- 5 The highest activity reported for hydrogen transfer reactions of aryl ketones by ruthenium complexes is 2900 h⁻¹: J. P. Genet, V. Ratovelomanana-Vidal and C. Pinel, Synlett, 1993, 478.
- 6 G. Zassinovich, G. Mestroni and S. Gladiali, Chem. Rev., 1992, 92, 1051.